Electrogenic Sulfate/Chloride Exchange in Xenopus Oocytes Mediated by Murine AE1 E699Q
نویسندگان
چکیده
Functional evaluation of chemically modified human erythrocytes has led to the proposal that amino acid residue E681 of the band 3 anion exchanger AE1 lies on the anion translocation pathway and is a proton carrier required for H+/SO4(2-) cotransport. We have tested in Xenopus oocytes the functional consequences of mutations in the corresponding residue E699 of mouse AE1. Most mutations tested abolished AE1-mediated Cl- influx and efflux. Only the E699Q mutation increased stilbene disulfonate-sensitive efflux and influx of SO4(2-). E699Q-mediated Cl- influx was activated by elevation of intracellular SO4(2-), but E699Q-mediated Cl- efflux was undetectable. The DNDS (4,4'-dinitrostilbene-2,2'-disulfonic acid) sensitivity of E699Q-mediated SO4(2-) efflux was indistinguishable from that of wt AE1-mediated Cl- efflux. The extracellular anion selectivity of E699Q-mediated SO4(2-) efflux was similar to that of wt AE1-mediated Cl- efflux. The stoichiometry of E699Q-mediated exchange of extracellular Cl- with intracellular SO4(2-) was 1:1. Whereas SO4(2-) injection into oocytes expressing wt AE1 produced little change in membrane potential or resistance, injection of SO4(2-), but not of Cl- or gluconate, into oocytes expression E699Q depolarized the membrane by 17 mV and decreased membrane resistance by 66%. Replacement of bath Cl- with isethionate caused a 28-mV hyperpolarization in SO4(2-)-loaded oocytes expressing E699Q, but had no effect on oocytes expressing wt AE1. Extracellular Cl(-)-dependent depolarization of SO4(2-)-preloaded oocytes was blocked by DNDS. AE1 E699Q-mediated inward current measured in the presence of extracellular Cl- was of magnitude sufficient to account for measured 35SO4(2-) efflux. Thus, AE1 E699Q-mediated SO4(2-)/Cl- exchange operated largely, if not exclusively, as an electrogenic, asymmetric, 1:1 anion exchange. The data confirm the proposal that E699 resides on or contributes to the integrity of the anion translocation pathway of AE1. A single amino acid change in the sequence of AE1 converted electroneutral to electrogenic anion exchange without alteration of SO4(2-)/Cl- exchange stoichiometry.
منابع مشابه
Mouse Ae1 E699Q mediates SO42-i/anion-o exchange with [SO42-]i-dependent reversal of wild-type pHo sensitivity.
The SLC4A1/AE1 gene encodes the electroneutral Cl(-)/HCO(3)(-) exchanger of erythrocytes and renal type A intercalated cells. AE1 mutations cause familial spherocytic and stomatocytic anemias, ovalocytosis, and distal renal tubular acidosis. The mutant mouse Ae1 polypeptide E699Q expressed in Xenopus oocytes cannot mediate Cl(-)/HCO(3)(-) exchange or (36)Cl(-) efflux but exhibits enhanced dual ...
متن کاملSpecificity of anion exchange mediated by mouse Slc26a6.
Recently, CFEX, the mouse orthologue of human SLC26A6, was localized to the brush border membrane of proximal tubule cells and was demonstrated to mediate Cl(-)-formate exchange when expressed in Xenopus oocytes. The purpose of the present study was to examine whether mouse Slc26a6 can mediate one or more of the additional anion exchange processes observed to take place across the apical membra...
متن کاملRegulation of CFTR chloride channel trafficking by Nedd4-2: role of SGK1
Introduction: The cystic fibrosis transmembrane conductance regulator (CFTR) chloride (Cl−) channel is an essential component of epithelial Cl− transport systems in many organs. CFTR is mainly expressed in the lung and other tissues, such as testis, duodenum, trachea and kidney. The ubiquitin ligase neural precursor cells expressed developmentally down-regulated protein 4-2 (Nedd4-2...
متن کاملAn ion transporter involved in congenital deafness focus on "human pendrin expressed in Xenopus laevis oocytes mediates chloride/formate exchange".
Pendred syndrome, characterized by congenital sensorineural hearing loss and goiter, is one of the most common forms of syndromic deafness. The gene causing Pendred syndrome (PDS) encodes a protein designated pendrin, which is expressed in the thyroid, kidney, and fetal cochlea. Pendrin functions as an iodide and chloride transporter, but its role in the development of hearing loss and goiter i...
متن کاملACELL January 47/1
Scott, Daryl A., and Lawrence P. Karniski. Human pendrin expressed in Xenopus laevis oocytes mediates chloride/ formate exchange. Am. J. Physiol. Cell Physiol. 278: C207– C211, 2000.—Pendred syndrome, characterized by congenital sensorineural hearing loss and goiter, is one of the most common forms of syndromic deafness. The gene causing Pendred syndrome (PDS) encodes a protein designated pendr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 109 شماره
صفحات -
تاریخ انتشار 1997